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Nonliwar pressure oscillations have been observed in liquid propellant rocket instability 
preburner devices. Unlike the familiar transverse mode instabilities that characterize 
primary combustion chambers, these o d a t i o n s  appear as longitudinal gas motions with 
frequencies that are typical of the chamber axial acoustic modes. In several respects, the 
phenomenon is similar to longitudinal mode combustion instability appearing in low-smoke 
solid propellant motors. An important feature is evidence of steep-fronted wave motions 
with very high amplitude. Clearly, gas motions of this type threaten the mechanical 
integrity of associated engine components and create unacceptably high vibration levels. 
This paper focuses on development of the analytical tools needed to predict, diagnose, and 
correct instabilities of this type. For this purpose, mechanisms that lead to steep-fronted, 
high-amplitude pressure waves are described in detail. It is shown that such gas motions are 
the outcome of the natural steepening process in which initially low amplitode s t a n d i n g  
acoustic waves grow into shock-like disturbances. The energy source that promotes this 
behavior is a combination of unsteady combustion energy release and interactions with the 
quasi-steady mean chamber flow. Since shock waves characterize the gas motions, 
detonation-like mechams ms may well control the unsteady combustion processes. When the 
energy gains exceed the losses (represented mainly by nozzle and viscous damping), the 
waves can rapidly grow to a finite amplitude limit cycle. Analytical tools are described that 
allow the prediction of the limit cycle amplitude and show the dependence of this wave 
amplitude on the system geometry and other design parameters. This information can be 
used to guide corrective procedures that mitigate or eliminate the oscillations. 

Nomenclature 
= unsteady pressure amplitude 
= mean speed of sound 
= oscillatory energy density 
= time-averaged oscillatory system energy 
= normalization constant for mode m 
= wave number for axial mode m 
= chamber length 
= mode number 
= reference chamber Mach number 
= outward pointing unit normal vector 
= oscillatory pressure 
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= mean chamber pressure 
= radial position 
= chamber radius 
= Strouhal number, k,,, I fib 
= time 
= oscillatory velocity vector 
= mean flow velocity component 
= axial position 

= growth rate (dimensional, sec-' ) 
= reciprocal of square root of the acoustic 

Reynolds number, d a  
= compressible viscous length, 6,/- 
= wave amplitude, A,, I( yp,,) 
= ratio of specific heats 
= second coefficient of viscosity, - j p  
= kinematic viscosity, p i p  
= density 
= unsteady vorticity magnitude 
= mean vorticity magnitude 
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Subscripts 
b = combustion zone 
m = specific to a given mode number 

Superscripts 
* = dimensional quantity 
u = vortical (rotational) part 

A = acoustic (irrotational) part 
(L ), ( i ) = part of a complex variable 

= mean quantity 

I. Introduction 
OMBUSTION instability in liquid propellant is C most often associated with high frequency 

transverse acoustic modes. Recent experiments 
involving liquid rocket preburners have indicated the 
presence of another form of instability that is quite 
similar to that observed in solid propellant rockets with 
cylindrical combustion chambers and internal-burning 
propellant grains.'-4 In these tests, oscillations are 
observed that are clearly associated with longitudinal 
acoustic waves: calculated frequencies agree closely 
with measured data; as usual, the first longitudinal 
mode is seen to constitute the predominant spectral 
component. 

Such oscillations are not desirable from several 
standpoints; vibration levels measured in the tests often 
exceed 190 g and the oscillations are accompanied by 
mean pressure changes of significant amplitude. Both 
of these features represent a threat to the structural 
integrity of the system. Chamber pressure excursions 
are undesirable as they can alter the performance of the 
injection system in unpredictable ways. 

An important feature of the data is the presence of 
a rich set of harmonics to the extent that the composite 
waveform appears to be steep-fronted. Again, these 
features are similar to those experienced in high- 
amplitude triggered instabilities in solid motors; it has 
been shown that in those systems the wave motions are 
traveling shock-like waves rather than standing acoustic 

This solid motor problem was once dubbed 
irregular burning because the oscillations were 
habitually coupled with a distinct mean pressure 
excursion, the dreaded DC Many early solid 
motor tests ended in catastrophic structural failure due 
to the mean pressure rise. 

In  this paper we bring to bear a new set of 
analytical tools that have evolved from many decades 
of struggle with the solid propellant rocket combustion 
instability problem. Recent work by the present authors 
has led to considerable progress in the development of 
useful predictive capability. Companion papers 
describe the success of these efforts.'0"' To be useful, 

such predictive tools must go far beyond the usual 
"growth rate" calculations and stability maps that are 
commonly used. It is necessary to accommodate the 
nonlinear aspects of the problem in detail. The 
presence of steep-fronted waves and the associated 
mean pressure rise clearly indicate the presence of 
nonlinear behavior in the preburner instability problem. 
In order to handle this situation, the analysis must 
account for: 

Steep-fronted, traveling, shocked pressure 
waves. 
Combustion coupling including: unsteady 
distributed energy release, detonation wave 
phenomena, and interactions with the 
propellant injection processes. 
Surface effects including heat transfer and 
frictional energy losses. 

Each of these elements receives due consideration 
in the approach to be presented here. In the process, 
application to prediction, diagnosis and correction of 
liquid engine preburner longitudinal oscillations will be 
demonstrated. 

11. Experimental Observations 
In this section, we briefly outline what has been 

observed in recent preburner test experience. Due to 
the sensitive nature of this information, actual data is 
not displayed. However, similar data from solid rockets 
tests will be described in considerable detail. The 
similarities between the two data sets will be quite 
apparent. 

A. Description of Typical Preburner Geometry 
A very simple burner geometry will be described 

consisting of an injector surface at the head-end through 
which liquid hydrogen and liquid oxygen are inserted 
into the combustion chamber. Figure 1 is a schematic 
of the test apparatus. The mixture is deliberately very 
fuel rich in the case described. In the preburner test 
device, a choked Lava1 nozzle is utilized as shown in 

injector 
LO2 

choked nozzle 

resonant mixing ring or 
cavities flame holder 

Fig. 1 Schematic of preburner test device. 
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the diagram. Other features sometimes employed 
include mixing rings or flame holders and acoustic 
cavities intended to suppress undesirable high- 
frequency tangential mode gas oscillations. The latter 
device, does not, unfortunately, provide significant 
damping for the control of longitudinal oscillations. 

B. Description of Typical Preburner Tests 
Tests are conducted by ramping up the fuel and 

oxidizer flows to an intermediate throttle level. In some 
experiments, it was during this mid-throttle level that 
high-amplitude, longitudinal mode pressure oscillations 
were experienced. When throttle setting was further 
advanced, the oscillations were suppressed. 

A typical record with low frequency resolution is 
shown in Fig. 2(a). Pressure sensors were placed at 
several locations at the chamber boundaries including 
the injector surface and the nozzle entrance. Pressure 
data were also secured at points within the LOX and H2 
injectors. Figure 2(b) shows a typical steep-fronted 
wave form measured near the injector face; the 
frequency of this wave closely corresponds to the first 
longitudinal acoustic mode. The spectrum is illustrated 
in Fig. 2(c). Pressure data were also secured at points 
within the LOX and H2 injectors. In general, these 
measurements also showed spectral characteristics, 

a) meanpressure 

Time, t 

1- first longitudinal mode 

IC) spectrum 
Frequency, f 

Fig. 2 Typical pressure measurements. 

mean pressure shift, and oscillations that followed those 
measured in the main chamber. However, there were 
phase shifts as one would expect between the LOX and 
H2 pressure fluctuations and the oscillations measured 
within the combustion chamber near the injector face. 
This set of observations play a major role in identlfylng 
the mechanisms that lead to the oscillations. These 
matters will be carefully examined after the basic 
mathematical formulation needed in interpreting the 
data is set forth. 

III. Analysis 
Classical analyses have utilized the assumption of a 

system of irrotational acoustic waves. Experimental 
data often motivates this approach since, as in the 
preburner case described here, observed oscillation 
frequencies are readily correlated with the standing 
acoustic modes of the chamber. However, assuming an 
acoustic basis for an instability theory results in the 
inability to accommodate correct boundary conditions 
(such as the no-slip condition at chamber boundaries) 
and the loss of important flow features such as unsteady 
vorticity that can have major impact on the validity of 
the results. It is also difficult to properly treat finite 
amplitude waves using an acoustic model. There is 
much evidence that the high-amplitude wave systems in 
unstable rockets are more akin to traveling shock 
f r ~ n t s . * ~ - ' ~  Early efforts were made to account for 
steepened wave effects"', but the analytical methods 
applied did not lead to practical solutions. These were 
usually applications of the method of characteristics 
that did not lend themselves well to generalized 
computational techniques of the kind needed for a 
practical stability assessment algorithm. 

A. Experience with Solid Propellant Motors 
The well-known failure of predictive algorithms in 

solid rocket analysis is largely the result of neglect of 
key features of the unsteady flow of combustion 
products. In particular, one must account for effects of 
vorticity production and propagation and for the 
tendency of initially weak (essentially acoustic) waves 
to steepen into shock-like wave motions. When such 
waves interact with a combustible mixture of injectants, 
then the possibility of unsteady detonation waves must 
also be addressed. Very significant improvement in 
predictive capability results from inclusion of these 
features, which until recently were not included in 
either liquid or solid motor analyses. 

Solid propellant rocket motor analysis as applied in 
the SSP (Standard Stability Prediction) computer 
program, implements Culick's irrotational acoustics 
based While the Culick approach 
introduces a more complete formulation than similar 
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algorithms in the accepted liquid rocket tool kit, it does 
not yield satisfactory predictive capability. This is 
partly the result of the assumption that the wave 
motions are strictly acoustic (irrotational) in nature. 
Recent work by the writers of the present paper focused 
on improving SSP (Standard Stability Prediction 
computer program) by inclusion of important 
mechanisms such as vorticity generation and shock 
wave interactions. Much of the recent progress in the 
solid motor analysis leads directly to similar 
improvements in handling the liquid rocket instability 
problem. 

B. Rotational Flow Effects 
Considerable progress has been made in the last 

decade in understanding both the precise source of the 
vorticity and the resulting changes in the oscillatory 
flow-field. A n a l y t i ~ a l , ’ ~ . ~ ~ - ~ ~  and 
experimental  investigation^^@^^ have demonstrated that 
rotational flow effects play an important role in the 
unsteady gas motions in solid rocket motors. Much 
effort has been directed to constructing the required 
corrections to the acoustic model. This has culminated 
in a comprehensive picture of the unsteady motions that 
agrees with experimental rnea~urements,’~~’~*~~ as well 
as numerical simulations.28 

These models were used in carrying out three- 
dimensional system stability calculations,17r26 in a first 
attempt to account for rotational flow effects by 
correcting the acoustic instability algorithm. In this 
process one discovers the origin, and the three- 
dimensional form, of the classical flow-turning 
correction; related terms appear that are not accounted 
for in the SSP algorithm. In particular, a rotational 
correction term was identified that cancels the flow- 
turning energy loss in a full-length cylindrical grain. 
However, all of these results must now be questioned 
because they are founded on an incomplete 
representation of the system energy balance. 

Culick’s stability estimation procedure is based on 
calculating the exponential growth (or decay) of an 
irrotational acoustic wave; the results are equivalent to 
energy balance models used earlier by Cantrell and 
Hart.& In all of these calculations the system energy is 
represented by the classical Kirchoff (acoustic) energy 
density. Consequently, it does not represent the fu l l  
unsteady field, which must include both acoustic and 
rotational flow effects. Kinetic energy carried by the 
vorticity waves is thus ignored. It is then readily 
demonstrated that the actual average unsteady energy 
contained in the system at a given time is about 25% 
larger than the acoustic energy alone.I8 Furthermore, 
representation of the energy sources and sinks that 
determine the stability characteristics of the motor 

chamber must also be modified. Attempts to correct 
the acoustic growth rate model by retention of 
rotational flow source terms only, ‘7*26 preclude a full 
representation of the effects of vorticity generation and 
coupling. 

In liquid engines, the main role played by the 
rotational flow interactions is in controlling boundary 
conditions at the chamber walls and especially at the 
injector boundaries. Vorticity is created in the case of 
waves traveling parallel to the injection interface 
because such waves (tangential modes for example) 
represent unsteady pressure gradients across the 
incoming quasi-steady flow streamlines. This vorticity 
is propagated into the chamber mainly by convection, 
and it has important implications in terms of the motor 
stability. For the preburner oscillations with gas 
motions in a direction parallel to the burner axis and 
hence normal to the injector surface, no rotational 
corrections from wave interactions are necessary. 
However, since the flow near the flame-holder or 
mixing ring is highly sheared, it is possible that vortex 
shedding leading to an additional source of acoustic 
energy may be present. Clearly this is an additional 
rotational flow effect that has been an important 
element in some rocket motor instability problems.“-J7 
In the present case, there is some evidence that vortex 
shedding is present; frequencies that do not fit with the 
acoustic modes are sometimes present. However, there 
is compelling evidence that the major source of energy 
driving the observed oscillations comes from nonlinear 
interactions of a steep wave system with unsteady 
injection of the propellants and the resultant oscillatory 
release of energy in the combustion and mixing 
processes. 

C. Nonlinear Effects 
The effects of nonlinear interactions play a major 

role in controlling the nonlinear attributes of pressure 
oscillations in liquid motor combustion chambers. 
Thus strictly linearized models are of little value in the 
present situation. Of crucial importance is the modeling 
of the time history of the oscillations and their limiting 
amplitude and the critical triggering amplitudes at 
which an otherwise stable motor is caused to transition 
to violent oscillations. Pulsing of this sort can occur 
from random “popping” and other natural disturbances, 
so it is important to characterize this aspect of motor 
behavior. In the preburner case, there is no evidence of 
triggering, although pressure disturbances created 
during the startup process could act as a trigger 
mechanism. 

It is well-known that shock waves are a major 
nonlinear attribute of axial mode oscillations in solid 
rockets?-7 There is no question that shock-like features 
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characterize the gas motions described in Fig. 2. The 
steepening process is a natural feature of nonlinear 
resonant oscillations of gas c o l ~ m n s . ~ " ~ ~  Recognition of 
the major role played by shock waves in combustion 
instability is not widespread in the present research 
community, although many past investigators have 
explored this p o s ~ i b i l i t y . ~ * ~ ~ ~ ~ ~  Current liquid rocket 
engine instability prediction methods do not incorporate 
this important aspect of the problem. 

D. Formulation of Nonlinear Stability Algorithm 
In this section we briefly discuss what is needed 

from the theoretical standpoint to provide a useful 
analytical framework for combustion instability. It is 
necessary to accommodate the features we have 
identified as key elements in a correct physical 
representation. We must discard models based on the 
acoustic point of view. Nonlinear energy losses in 
steep wave fronts and energy flow to the wave structure 
from combustion must be accommodated. It is also 
necessary to provide a framework that can ultimately 
include effects of mixing, vaporization, and other two 
phase flow effects. These elements will be included 
only in outline form, but placeholders are inserted 
which will require later elaboration. By far the most 
effective method for incorporating this large array of 
physicalkhemical interactions is by using a global 
nonlinear energy balance. Methods based on the usual 
perturbed acoustic wave equation cannot properly 
account for the many interactions that must be included. 

background 
noise level 

at t=0  

E. Mathematid Strategy 
Since the handling of steep fronted waves is of 

principal concern, it is necessary to carefully lay out a 
solution technique that will lead to a practical predictive 
algorithm. To make the mathematical problem 
tractable, we choose to avoid fashionable numerical 
strategies such as method of characteristics or a full 
CFD treatment of the problem Either of these 
techniques would likely absorb an excess of time and 
resources, and in the end would fail in the problem we 
attempt to solve here. What is required is an approach 
that bridges the gap between the earlier perturbation 
techniques (that limit the solutions to linear gas motions 
near the stability boundary) and other ad hoc methods 
such as those introduced by Culick to study nonlinear 
features of combustion in~tabi l i ty . '~ ,~~ In those works, 
Culick and his coworkers model the steepening process 
in which energy flows by a process of nonlinear mode 
coupling. In these calculations, one traces the flux of 
energy from low frequency to higher frequency spectral 
components. 

In the problem of central interest here, we are not 
concerned with the steepening process, per se, rather 
we wish to understand the gas motions in their fully 
steepened state. Figure 3 illustrates several aspects of 
the problem that must be addressed; it portrays all key 
features of nonlinear combustion instability that appear 
experimentally. Furthermore, it suggests a useful way 
to categorize the various analytical methods by which 
we attempt to understand this very complicated physical 

1 st limit cycle amplitude --------- t nonlinear behavior: 

increasing mode integer 

linear behavior zone: Time, r -* 
exponential growth or decay 
independent mode amplitudes 

Fig. 3 Evolution of system amplitude. 
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problem. If the waves grow from the always present 
noise in the system, the motion is linear and each 
acoustic mode grows individually according to the 
balance of energy gains and losses peculiar to that 
operating frequency. In general, the lowest-order mode 
grows most rapidly because it requires less energy to 
excite. As the oscillations approach a finite amplitude, 
nonlinear effects begin to appear and there is a phase in 
which energy is redistributed from lower to higher 
modal components; it is this process that is represented 
in Culick’s nonlinear model. 

As the wave steepens, the relative amplitudes of 
the constituent acoustic modes reach a “frozen” or 
stationary condition corresponding to shock-like 
behavior. This is the fully nonlinear state illustrated in 
the figure. In pulse testing of motors, the steepening 
process is almost instantaneous. For example, in his 
solid rocket tests, Brownlee’ notes that when the pulse 
is fired, ‘ I .  . . the injected flow disturbance traversed the 
length of the motor, partially reflected at the nozzle end, 
and became a steep-fronted shock-like wave in one 
cycle.” Thus in modeling such effects, it is unnecessary 
to trace the full steepening process as Culick attempts to 
do. The relative wave amplitudes are readily estimated 
from a large database of experimental data to be 
described later, and these remain fixed whenever the 
driving mechanisms continue to supply sufficient 
energy to the oscillating system. Thus, it is readily 
established that precise knowledge of the relative 
amplitudes is not necessary to achieve an accurate 
estimate of the limit cycle and triggering amplitudes. 

We must formulate a mathematical strategy that 
yields essential information, namely the limit amplitude 
reached by the system in its fully steepened state. This 
is the knowledge required by the engine system 
designer in assessing potential vibration levels, and as 
we will show, the severity of heat loads and force levels 
on fragile injector components. 

The key to simplifying the nonlinear problem is to 
assume that the fully steepened traveling wave is a 
composite of the chamber normal modes: 

P ( ‘ . f ) = & ( t ) ~ q o ( f ) ~ ~ ( ~ )  (1) 
m=l 

where &(t) is the instantaneous amplitude. This is a 
proven strategy6v7 that conforms in all respects to all 
behavioral characteristics observed experimentally. 
These must obviously be accommodated in our solution 
algorithm. Before proceeding with the analysis, let us 
first test this model to see if it contains the necessary 
features. 

F. Shocked Acoustic Waves 
Equation (1) provides a very powerful tool and a 

way to avoid all computational difficulties associated 
with modeling of the unsteady flow field. In the case of 
simple longitudinal oscillations in a chamber of 
constant cross section, the functions in the summation 
are, for example: 

where L is the chamber length and z is the axial 
position. If Eq. (1) is evaluated with these parameters, 
then the waveform illustrated in Fig. 4(a) results. This 
should be compared to measured waveforms shown in 
Figs. l(b) and 4(b). Although the individual 
components are effectively standing acoustic modes, 
the composite wave is a traveling steep fronted wave. 
Thus, one can accurately represent a traveling shock 
wave by superposition of standing acoustic waves. This 
is a powerful computational simplification. 

G. Notation 
The following dimensionless variables will be used 

(star * denotes dimensional quantities; subscript 0 
indicates quiescent chamber reference conditions): 

where F is a body force and e is specific internal 
energy. The dimensionless governing equations are: 
Continuity: 

@ + V . ( p u ) = O  
at 

(4) 

Momentum: 

p - + + v u . u - u x w  (5 
(5) 

1 

Y 
= --Vp - ~ ’ V X V X U  + 6jV (V . U) + F 

Energy: 

a 
at 
-[ p ( e  -+ +u . u ) ]  + v . [ pu (e + +u . u )] 

1 - - V2T -- V . ( p~ ) + Pu. ( u X LD) 
(Y- 1) Pr Y 
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Species mass fraction: 

* 

p [a,: - + u - v q  1: - -v2q=wi (7) 

r p = p i p  (1) 

p = p+ p(') 

T = T+T(') (11) 

u = M,U + U(l' 

u = M , V x U + V x u ( ' )  =M,a+"(') 

State: 

+. 

P = P T  (8) 
The Prandtl number Pr and viscous reference lengths 
(proportional to inverse square root of appropriate 
Reynolds numbers) appear naturally. These are defined 
as: 

C P  P r E P  

2 v  6 =- 

K 

%= (9) 
6," = 62 (v/p+q) I 

' 1  --v . ( p u ) +  pu . ( u x w )  
Y 

+62 [w . w - u .  VXW]+ 62 V2T * (13) 
( Y - W  

2 + u . V ( V . u ) ] + d + u . F  
L 

K 

The latter dimensionless length is the reference flame 
length needed in regions dominated by combustion heat 
release. Other variables needed in modeling chemical 
reactions are: 

a) Waveform calculated via Eq. (1) using 20 modes where shorthand notation has been adopted for the 
distributed heat release in the combustion processes. 
The body force, F, is a placeholder for several two- 
phase flow effects such as spray atomization, etc. that 
will be treated later. Note that the compressive viscous 
force and conduction heat transfer terms are retained. 
These are the source of the important nodinear energy 
loss in steep wave fronts. 

Using Eqs. (1 l), one can now expand EQ. (12) to 
give the equation for the system amplitude. To 
accomplish this, the time averaged Eq. (13) can be 
written as 

I 

b) Preburner waveform during severe oscillation 

Fig. 4 Measured versus calculated wave form 
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d e  
dt 

2&-{5) 

--v . ( p u )  + pu . ( u  x w )  + u . F + Q 

+CF2 [w . w - u .  Vxw]+6,2u . V ( V . u )  
=( ; 
where 

is the time averaged oscillatory energy. Note that this 
consists of a “potential” energy proportional to the 
pressure fluctuation and a kinetic part proportional to 
the square of the particle velocity. The latter is not the 
simple acoustic particle velocity; it is the composite of 
the irrotational and rotational parts needed to satisfy 
correct boundary conditions at the chamber surfaces. 

Equation (15) is similar to the usual Kirchoff 
reference energy density from classical acoustics:54 

The differences are the result of relaxing the isentropic 
flow assumption that was used in deriving Eq. (16). 

I. Spatial Averaging 
In order to account for the net behavior of the 

entire system it is now required to integrate the time- 
averaged energy density over the chamber control 
volume. Define the reference system energy, 

then the rate of change of system amplitude can be 
written in the convenient form: 

(18) 

where a“) is the linear growth rate for the composite 
wave system. This expression emphasizes the important 
fact that the nonlinear model is only as good as the 
linear representation of the system. 

J. Linear Growth Rate 

d e  
dt 
- = @&+ &)&Z + a(3)e’ + . . . 

The linear part of Eq. (1 8) becomes 

V V J 
where only the placeholders for combustion heat release 
and two-phase flow interactions are shown. It happens 
that careful evaluation of the volume integrals in Eq. 
(19) leads to cancellation of many of the terms. 

In many ways, achieving a valid linear model is the 
most difficult part of the entire problem. It has in fact 
been the downfall of numerous past attempts. Much 
time and energy has been expended on attempts to 
correct deficiencies in the linear model by introduction 
of ad hoc fixes that are often based on guesswork, and 
misinterpretation and/or distortion of experimental 
evidence. The roadway is strewn with the wreckage of 
such attempts; we avoid the temptation to dwell on this 
unhappy aspect of the past. Clearly, the only path to 
success is to retain and carefully evaluate all of the 
physical information that has been so carefully 
collected in the system energy balance constructed here. 

To illustrate the benefits of a complete energy 
balance as compared to earlier models based on the 
perturbed wave equation approach, we briefly examine 
the origins of the Culick flow turning effect. Flow 
turning has been a source of considerable debate, 
disagreement, and unhappiness in the solid propellant 
rocket instability research community. It introduces a 
major energy sink in stability assessments using the 
SSP (standard stability prediction) algorithm. 
Unfortunately, this term leads to a damping effect 
which in most motor evaluations is as large as other 
main contributions to the energy balance including the 
combustion-related pressure coupling effects. We now 
demonstrate the handling of terms in Eq. (19), to 
evaluate the term from which flow turning originates, 
namely: - -  

at) = ~ ~ ~ ~ ( L T . ( u ’ x m ’ ) + ( u ’ . U x w ’ ) ) d V  2E2 (20) 

The subscript, 4, is an artifact of a numbering system 
introduced in Ref. (1 1) to keep track of the many linear 
stability contributions in Eq. (19). Flow turning was 
first identified by Culi~k’~,~’ in his one-dimensional 
calculations. It appeared as a result of forcing 
satisfaction the no-slip condition (which could not be 
accomplished in his three-dimensional model because 
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of the irrotational flow assumption). ~ ~ ~ ~ d r ~ ~ ~ . ~ ~ + ~ ~ - ~ ~  

later showed that the actual source of the flow turning 
was the irrotational part of the second term in Eq. (20). 
No earlier stability calculations incorporate the full set 
of rotational terms included in Eq. (20). When all of 
the terms are properly accounted for, and by applying 
the standard scalar triple product identity 

we discover that 

A . ( B X C )  = B . ( C X A )  

u . (u‘x w‘) + (u’ . u x w’) 

= (-a’. u x w’) + (u’ . u xu’)  = 0 (21) 
Flow turning has now completely vanished; a result that 
agrees with experimental evidence and with other 
independently conducted ana lyse^.^.^^ 

This correction alone leads to major improvement 
in agreement with experimental data- The lesson here 
is that only by accounting for all unsteady energy gains 
and losses can a correct linear stability theory be 
achieved. Other terms in Eq. (19) once thought to have 
important stability implications do not appear when the 
integrals are carefully evaluated. 

We have recently completed a full evaluation of 
Eq. (19) for the solid motor case;”.” current efforts are 
focused on a similar evaluation for the liquid motor 
case.59 A major effort is now being devoted to the 
important transverse mode case of central importance in 
large liquid engine development  program^?^ 
K. Linear Driving Mechanisms 

Equation (19) clearly shows all potentially 
important sources of unsteady energy as well as 
damping effects. Many years of experience have shown 
that the first pair of terms represented by the surface 
integral 

play a major role in driving waves. It is also the origin 
of the important nozzle damping effect In cases where 
the combustion energy release occurs close to the 
surface (as in a burning solid propellant) or near the 
injector surface, this term is the primary source of 
unsteady energy. At first glance, it appears that Q. 
(22) should represent zero contribution since for 
acoustic motions the pressure and velocity fluctuations 
are 90” out of phase. However, one must account for 
the phase shift in the combustion zone region of 
nonuniformity. This is done in the solid propellant case 
by introducing the admittance function accounting for 
myriad chemical and physical processes within the 
flame zone. For example, one defines 

expressing the normal velocity fluctuation in terms of 
the pressure disturbance that creates it. Major effort is 
expended in the solid rocket community in 
characterizing the admittance function. 

This is a familiar scenario and need not be treated 
in depth here. The solid rocket literature is replete with 
discussion of this important concept. A lucid treatment 
can be found in Ref. 26. The associated nozzle 
damping is also described in detail in this and many 
other documents. The nozzle damping plays an 
important role in the preburner oscillations. 

The first term in Eq. (22) is also a potent source of 
energy in the preburner problem. If (p’n-l i )  is 
evaluated at the injection surface accounting for the 
phase difference between fluctuations in the incoming 
oxidizer and fuel particle velocities and the pressure 
oscillations at the interface, it will be seen that a 
powerful analog to the solid rocket pressure coupling is 
identified. This is related to the well-known “injector 
coupling” mechanism. However, it allows a quantitative 
estimate of this driving effect. Examination of the 
preburner experimental data shows that indeed the 
pressures in the LOX and H2 feed lines upstream of the 
injector reflect the pressure fluctuations in the chamber 
and exhibit the phase differences needed to explain this 
powerful unsteady energy source. Additional energy is 
supplied to the waves via the more traditional 
distributed combustion; this is enhanced by the phase 
shifts already present in the injectants as they enter the 
combustion zone. However, there can be no doubt that 
any energy source located near a pressure antinode (e.g. 
at the injector surface) is a potent driver of oscillations 
of the type observed. These matters are currently 
undergoing thorough study by the authors and their 
coworkers, and we expect that they will play a major 
role in the predictive algorithm under development by 
our research group. 

L. Effects of Nonlinearity 
It is now required to examine nonlinear terms 

arising from the expansion of Eq. (14). The most 
important of these are the energy losses incurred in 
steep wave fronts. Let us focus on the last set of terms 
in Eq. (14). After temporal and spatial averaging, we 
are left with 

Those readers experienced in gasdynamics will 
recognize in this term the source of the entropy gain 
and associated energy loss in a steep wave front. In 

-9- 
American Insftute of Aeronautics and Astronautics 



fact, this term is usually ignored because it is only 
important if there are very steep gradients in particle 
velocity and temperature. Let us evaluate this term by 
considering a very small portion of the chamber volume 
that encompasses the shock layer formed by a 
steepened wave system as described earlier. The shock 
layer can be treated as a region of nonuniformity as 
illustrated in Fig. 5 .  

Following standard procedures Eq. (23)  can be 
reduced to the classical textbook result showing the 
origin of the entropy gain in the shockwave. By 
manipulations using the Rankine-Hugoniot equations, 
we find the formula for the energy loss in the steep 
wave to be 

leading to a simple approximation for the nonlinear 
stability parameter in Eq. (1 8), namely 

where 5 is a factor (of order I), which is dependent 
upon the waveform used to represent for the traveling 

shock wave. Spun is the area of the shock front. In the 
longitudinal case, this is simply the cross-sectional area 
of the duct at a convenient location; the forward 
chamber area is a good choice. 

This nonlinear loss effect is the principal damping 
mechanism in both liquid engines and solid propellant 
motors, and is the key element in understanding the 
limit cycle behavior so often encountered when finite 
amplitude waves appear. 

It is tempting to carry the implied perturbation 
series in Eq. (18) to higher than second order in the 
system amplitude. However, this is not justified in the 
present situation because we assume that the unsteady 
flow field and mode shape information for the chamber 
is accurate only to the first order in wave amplitude. 
Let us now test the results that we have found against 
experimental evidence. 

M. Limit Cycle Amplitude 
In liquid propellant engines one is seldom 

interested in tracing the details of the growth of the 
waves to their final state. Such engines usually operate 
for very long time (measured on the time scale of the 
wave motions) with correspondingly slow changes in 
the steady operating parameters. For this reason, 
strictly linear models provide very little useful 
information in the predictive sense. There is, however, 
a well-known rule ofthumb that su gests that large 
values of the linear growth rate, at), estimated for 
example by using Eq. (1 9) correlate with large values of 
the limit cycle amplitude. Clearly it is the latter 
amplitude that is of concern from the engine design 
point of view, since it is a measure of the vibration and 
other impacts on the system integrity due to the 
oscillations. 

What is required is knowledge of the limit 
amplitude reached as the wave system approaches a 
fully steepened form. Equation (1 8) provides the 
required formula for the limit amplitude. In the fully 
steepened state, the wave amplitude is stationary, and it 
is readily seen that the limit amplitude is 

&) 
Elifit = -- (27) #) ’ 

a physically meaningful only when a(*) is negative. 
This will always be the case for the shock loss 
mechanism described by Eq. (24) since it is the 
outcome of a positive definite entropy gain. This 
expression has been tested for many solid rocket data 
sets and has been found to yield an excellent estimate of 
the limit amplitude. Again, please note that good 
results depend critically on a valid linear stability 
estimate. 

Fig. 5 Shock layer structure. 
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N. Triggering Amplitude 
This is a controversial subject. If one examines 

Fig. 5,  in the context of Eq. (18) including terms to 
higher orders in the wave amplitude (fourth-order is 
required), it is theoretically possible to raise the 
amplitude of a system oscillating at its lowest limit 
amplitude to a yet higher limit amplitude by hard 
pulsing. That is, if the system receives sufficient energy 
to raise the oscillations above the critical triggering 
level as described in the figure, it may transition to a 
higher limit amplitude. This is what might be termed 
true triggering. 

Careful examination of solid rocket data shows that 
this scenario seldom fits what is actually observed. In 
every case studied by the authors, motors that have 
exhibited “triggering” were actually linearly unstable 
motors. That is, they are not stable motors that are 
triggered into a high-amplitude limit cycle. When such 
motors operate without deliberate pulsing, the wave 
system grows so slowly from the random noise that 
oscillations may be barely measurable by the end of the 
bum. 

However, when the motor receives a hard pulse, 
the broadband energy increment almost instantaneously 
excites finite amplitude steep fronted waves. Clearly, 
as Eiq. (18) shows, the time to reach the limit cycle 
depends on the initial system E created in the pulse. 
The system then either grows rapidly to its limit cycle 
amplitude or it may decay to the limit amplitude if the 
pulse starts the motion at E higher than the limit 
amplitude. Calculations using Eq. (27) agree very well 
with actual observations. 

We believe that true triggering is seldom, if ever, 
observed in practice. Much of the confusion over this 
issue has resulted from application of faulty predictive 
codes that almost always predict a linearly stable 
system. A classic example can be found in the recent 
experiments by Blomshield.’ All motors fired in this 
test series were predicted by the SSP algorithm to be 
linearly stable. In fact, most of the motors were linearly 
unstable at least during part of the bum. Unless excited 
by a sufficiently hard pulse, only very low-level 
oscillations were present. Strong pulsing during 
otherwise leisurely (linearly unstable) operation led to 
violent oscillations in many tests. 

0. The Mean Pressure Excursion 
The preburner data, Fig. 2, clearly show a rise in 

mean chamber pressure accompanying high-amplitude 
longitudinal mode oscillations. A test of the validity of 
the theory presented in this paper is its ability to predict 
this important classical feature of combustion 
instability. What we will demonstrate here is that the 
same mechanism that drives the oscillations (first term 

in Eq. (22)) is also the source of the DC shift 
phenomenon. This is a new result that has been shown 
to agree very well with experimental data in the solid 
motor case.l,lo.ll Until now, explaining the mean 
pressure excursion required invocation of ad hoc 
“velocity coupling” effects or “acoustic erosivity91.51 
These confusing and misleading paraphernalia can now 
be discarded. 

The source of the DC shift is readily found if 
nonlinear terms are retained in the continuity equation. 
Expanding Eiq. (3) and taking the time average yields 

- dF = -v . (M&J)--V. ( p ( I )  u ( I ) )  (28) 
df Y 

where the first term on the right represents the usual 
quasi-steady mass flux at the chamber boundaries. The 
similarity of the second term to the pressure coupled 
acoustic driving in Eq. (22) is obvious. Integration over 
the chamber volume leads to the formula for the rate of 
change of the quasi-steady chamber operating pressure: 

(29) 
The first term is handled by means of standard steady 
internal ballistics calculations. The second leads to the 
mean pressure shift. Notice that it is proportional to the 
second order of the wave amplitude. Equation (29) 
establishes the intimate coupling between the pressure 
rise and the growth and limiting of the pressure 
oscillations. 

P. Simulating and Predicting Preburner Behavior 
The results for the nonlinear system growth and the 

corresponding mean pressure excursion must be 
computed simultaneously. When the several system 
models are evaluated and the integrals are performed, 
we are left with a pair of coupled nonlinear, ordinary 
differential equations: 

These are readily solved using a simple numerical 
algorithm. The result is the time history of the growth 
and limiting of the pressure oscillation amplitude and 
the accompanying growth and limiting of the mean 
pressure amplitude. These results agree in every way 
with the preburner instability data set. 
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IV. Conclusions 
It is not possible at the present time to display 

results comparing the preburner experimental data with 
predictions from the algorithm just described. Much 
remains to be accomplished in carrying out the details. 
A computer algorithm is being written to enable the 
motor analysddesigner to predict the stability of a given 
system and to diagnose sets of experimental data. 

In order to aid the reader in envisioning the 
possibilities, we show here some recent results from a 
similar application of Eq. (30) in a difficult solid rocket 
instability problem. In many ways, the instability 
experienced in this example case closely parallels what 
has been observed in the liquid propellant preburner 
situation. 

A set of tactical solid motors of varying geometry 
and propellant characteristics were tested by Dr. F. 
Blomshield at NAWC, China Lake, CA.',60-61 In 
virtually all cases the standard stability prediction code 
(SPP) predicted stable behavior. Yet, many of the 
motors were readily pulsed into violent oscillations. 
Fig. 6 shows a pressure vs. time trace for a cylindrical 
motor from this test series. The progressive pressure 
rise results from the increasing burning surface area 
with time. The mean pressure shift and pressure 
oscillations are clearly shown. Data came from a 
pressure transducer at the motor forward end. As in the 
case of the preburner data depicted in Fig. 2, this motor 
exhibited a spectrum dominated by the 1L (first 
longitudinal mode) accompanied by a great many 
harmonics - strong evidence for steep-fronted waves as 
already described. 

Figure 7 shows the predicted behavior for this 
motor found by solving Eq. (30) using only geometrical 
and physical data from the tests - no curve fitting was 
employed. All important features of the actual data are 
well represented. Note that even though the system is 
linearly unstable, no wave growth or DC shift occurs 
unless the motor is pulsed. 

To summarize: we have devised a new procedure 
for estimating the tendency for a given rocket motor 
chamber to exhibit nonlinear combustion instability. 
The new algorithm gives not only growth rate 
information and the associated stability maps, but more 
importantly predicts the evolution of the system 
oscillation amplitude and the mean pressure shift. 
These analytical/numerical tools promise to give the 
motor designer the ability to avoid design features that 
may promote combustion instability much earlier in the 
development cycle than possible using other methods. 

If combustion instability problems are encountered 
in the test phase of engine development, these new tools 
yield an improved method for correlating experimental 

data and for correctly interpreting the results. They also 
provide the ability to test and perfect corrective 
mechanisms if these become necessary. 
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